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Superconducting nanowires fabricated via carbon-nanotube templating can be used to realize and study
quasi-one-dimensional superconductors. However, measurement of the linear resistance of these nanowires
have been inconclusive in determining the low-temperature behavior of phase-slip fluctuations, both quantal
and thermal. Thus, we are motivated to study the nonlinear current-voltage characteristics in current-biased
nanowires and the stochastic dynamics of superconductive-resistive switching, as a way of probing phase-slip
events. In particular, we address the question: can a single phase-slip event occurring somewhere along the
wire—during which the order-parameter fluctuates to zero—induce switching, via the local heating it causes?
We explore this and related issues by constructing a stochastic model for the time evolution of the temperature
in a nanowire whose ends are maintained at a fixed temperature. We derive the corresponding master equation
as a tool for evaluating and analyzing the mean switching time at a given value of current (smaller than the
depairing critical current). The model indicates that although, in general, several phase-slip events are neces-
sary to induce switching via a thermal runaway, there is indeed a regime of temperatures and currents in which
a single event is sufficient. We carry out a detailed comparison of the results of the model with experimental
measurements of the distribution of switching currents, and provide an explanation for the rather counterin-
tuitive broadening of the distribution width that is observed upon lowering the temperature. Moreover, we
identify a regime in which the experiments are probing individual phase-slip events, and thus offer a way of
unearthing and exploring the physics of nanoscale quantum tunneling of the one-dimensional collective quan-

tum field associated with the superconducting order parameter.
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I. INTRODUCTION

The fundamental process governing the collective physi-
cal properties of quasi-one-dimensional superconducting sys-
tems is the phase-slip process exhibited by the extended,
complex-valued superconducting order-parameter field
W(z)=|W¥(z)|expi®P(z), which depends on the position z
along the system. In the course of a phase-slip process the
field W(z) undergoes a transition from an initial (typically
metastable) supercurrent-carrying state W,(z) to a final one
W,(z). In settings in which the voltage drop between the ends
of the system is externally controlled, these metastable states
are topologically distinct from one another; the total changes,
Jdzd®;(z)/dz, in their position-dependent phases ®;(z),
from one end of the system to the other, differ by 27, and the
supercurrents carried by these states differ, too.!

In the absence of phase-slip processes, the order-
parameter field of quasi-one-dimensional superconducting
systems behaves reversibly, i.e., energy stored as kinetic en-
ergy associated with supercurrent remains undissipated. If,
however, phase-slip processes do occur so can dissipation,
part of the coherent kinetic energy of superflow being con-
verted into incoherent motion, i.e., heat. For example, in a
voltage-controlled setting, current-reducing phase slips occur
with a higher frequency than current-increasing ones, leading
to energy and current dissipation and the notion of an intrin-
sic resistance, as elucidated by Little’ and Langer and
Ambegaokar.® Similarly, in a current-controlled setting,* the
preferred sense of phase-slip processes yields an average
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voltage consistent with a positive Joule-heating power. This
is the sense in which phase-slip processes control the collec-
tive properties of quasi-one-dimensional superconducting
systems; they constitute the building blocks via which one
can understand properties such as dissipation.

In principle, transitions in the state of the order-parameter
field can behave predominantly either classically or quanta-
lly, depending on the temperature of the system. In the clas-
sical regime, their being metastable, the states are local
minima of the classical free energy, and the transitions be-
tween such states constitute thermal fluctuations of the order-
parameter field over the Arrhenius energy barriers that sepa-
rate these states. The study of the rates at which such
transitions occur, and their implications for collective charge
transport through superconducting nanowires, was initiated
by Little,”> and developed in detail, shortly thereafter, by
Langer and Ambegaokar® and by McCumber and Halperin.’
In the quantal regime, the transitions between the states are
quantum tunneling events, in which the entire, extended,
order-parameter field passes from one metastable state to
another through a classically forbidden set of field
configurations.®’

In this paper we develop a theory of the kinetics of phase
slips of the superconducting order-parameter field in settings
in which the heat liberated or absorbed during these pro-
cesses is not instantaneously dissipated but, rather, leads to
alterations in the local temperature of the quasi-one-
dimensional system and a resulting flow of heat, which feed
back to influence the phase-slip kinetics. As discussed by
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Tinkham et al.,? this feedback leads to a switching bistability
of the system involving a pair of mesoscopic states: an es-
sentially superconducting, low-voltage state and a more
highly resistive, high-voltage state. The rarity of phase slips
in the essentially superconducting state mean that very little
Joule heating takes place, which favors the persistence of this
state. However, the energy liberated by concentrated bursts
of phase slips can Joule heat the system enough to weaken
the superconductivity, which enhances the likelihood of
phase slips, and—via this feedback loop—Iead to the essen-
tial destruction of the superconductivity and the maintenance
of the more strongly Joule-heated and more highly resistive
state.

Recent advances in sample preparation techniques have
made possible the fabrication and exploration of extraordi-
narily narrow nanowires. These wires can be so fine, say
10 nm wide or even less, that they bring within reach experi-
mental conditions in which heat liberated during small num-
bers of phase-slip events—and perhaps even a single one—
can have a dramatic impact on the state of the wire,
triggering the switching transition from the superconducting
to the resistive state. Thus, by monitoring the voltage be-
tween the ends of the wire one should be able to observe
macroscopic, or at least mesoscopic, consequences of an in-
dividual phase slip, and hence investigate the properties of
these nanoscale building blocks of the collective behavior of
quasi-one-dimensional superconductivity. For example, one
should be able to ascertain the rate at which phase slips oc-
cur, and its dependence on temperature, applied current, wire
geometry, and materials parameters. One should also be able
to compare such rates with those suggested by theoretical
pictures in which the phase slips proceed primarily via ther-
mal activation over an energy barrier or via quantum tunnel-
ing through one. Hence, one should be able to move beyond
the nanoscience that observes the structure of nanomaterials
or single-particle phenomena within them, and progress to-
ward a nanoscience of collective processes.

The theory developed in this paper aims to take a step
beyond Ref. 8 by considering the stochastic aspects of the
phase-slip processes occurring in quasi-one-dimensional su-
perconducting systems, i.e., by allowing for sequences of
phase slips that occur at random intervals of time, and ex-
ploring the consequences of this stochasticity for the states
exhibited by the system. Our main focus will be on the im-
plications of this underlying stochasticity for the rate at
which quasi-one-dimensional superconducting systems un-
dergo switching transitions from the essentially supercon-
ducting state to the more highly resistive state, as a function
of the temperature and the current at which the system is
maintained. Experiments are commonly done in a mode in
which the current is not maintained at a fixed value but is,
rather, repeatedly ramped up at some fixed rate of increase,
the current at which the switching transition occurs being
monitored so as to produce a distribution of switching cur-
rents, which depends on the temperature and the ramping
rate of the current.”!?

Motivation for work reported in this paper comes from
the kinds of experimental investigations of superconductivity
in nanowires touched upon in the previous paragraph, and
the concomitant need for a road map to guide experimental
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investigations toward regimes of current and temperature in
which small numbers of phase-slip events, or even single
such events, induce switching transitions of essentially su-
perconducting wires to a highly resistive state. Experiments
performed in this regime should provide access to the tem-
perature and current dependences of the rate at which indi-
vidual phase-slip events occur. A brief account of this work
was reported in Ref. 11.

The present paper is structured as follows. In Sec. II we
describe the switching-current experiments on hysteretic su-
perconducting nanowires, along with details of our physical
picture of superconducting-resistive switching. We construct
a stochastic model of the dynamics of the temperature in
superconducting nanowires wires in Sec. III, and explore its
basic properties in Sec. IV. Next, we develop a formalism to
address the statistics of switching events in Sec. V, and use it
to compute the switching rate as a function of temperature
and bias current in Sec. VI, and, in turn, compare this rate to
experiments in Sec. VII. Finally, we present some conclud-
ing remarks in Sec. VIIL.

II. PHYSICAL SCENARIO FOR SWITCHING IN
CURRENT-BIASED NANOWIRES

The ultranarrow wires that we consider in this paper were
fabricated using molecular templating.!>!3 By using a solu-
tion containing long molecules such as carbon nanotubes or
DNA one can create a configuration in which a nanotube
traverses a trench so as to form a bridgelike structure. One
can then deposit a layer of superconductor, such as MoGe or
Nb, on top so that the nanotube provides scaffolding on
which to form a superconducting nanostructure. In effect,
one can thus fabricate a setup in which a free-standing su-
perconducting nanowire is connected at both of its ends to
superconducting leads, as shown in Fig. 1(a). The diameter
of the resulting nanowire can be made smaller than the co-
herence length of the superconductor, and the length of the
wire sufficiently greater than the coherence length so that the
nanowire provides a realization of a quasi-one-dimensional
superconductor in which the superconducting fluctuations
are effectively one dimensional. Through careful control, the
wires produced via molecular templating can be made amor-
phous and quite homogeneous. The resulting superconductor
ends up being in the dirty limit (i.e., the electron mean-free
path is smaller than both the coherence length and the pen-
etration depth).

Upon lowering the temperature, the resistance of the
nanostructure (i.e., the leads and the nanowire) exhibits
two drops: a sharp drop as the leads become supercon-
ducting and a second, much smoother transition, correspond-
ing to the onset of superconductivity in the nanowire itself.
The broad resistive transition of the nanowire can be under-
stood in terms of the occurrence of thermally activated
phase-slip fluctuations, and can be quantitatively fit in terms
of the Langer-Ambegaokar-McCumber-Halperin (LAMH)
theory~> by using the transition temperature and the coher-
ence length as fitting parameters. However, the behavior of
the resistance at very low temperatures is not unambiguously
established, either theoretically or experimentally. On the
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FIG. 1. (Color online) Schematic showing (a) the configuration
of the free-standing nanowire supported by the superconducting
leads, which act as a thermal bath; (b) the attenuation of the order
parameter ¢(x) in the core of a phase slip; (c) the simplified model
of the wire: phase slips occur exclusively in the central segment
while the end segments carry the heat produced by phase slips to
the thermal baths; (d) the temperature profile of the wire in the
simplified model, with uniform temperature in the central segment
and spatially varying temperature in the end segments.

one hand, time-dependent Ginzburg-Landau theory, which
forms the basis of the LAMH calculation, is not strictly ap-
plicable in this regime of temperatures and, in addition,
phase-slip processes involving quantum tunneling rather than
thermal barrier crossing are expected to become important in
this regime. And on the other hand, the value of the resis-
tance can fall below the noise floor of the experiment.

To overcome the difficulty in probing superconductivity
in nanowires at low temperatures associated with the small-
ness of the linear resistance, we focus on experiments involv-
ing high bias currents so that they lie beyond the linear-
response regime. In these experiments, the current through
the nanowire is ramped up and down in time, via a triangular
or sinusoidal modulation protocol. As the current is ramped
up, the state of the wire switches from superconductive to
resistive (i.e., normal), doing so at a value of the current that
is smaller than the depairing (i.e., equilibrium) critical cur-
rent; and on ramping the current down, the state gets re-
trapped into a superconductive state but at a value of current
smaller than the current at which switching occurred. Hys-
teretic behavior such as this, reflecting the underlying bista-
bility of the superconducting nanowire over a temperature-
dependent interval of currents, was first reported in Ref. 8.
The experiments addressed in the present paper®!? go a step
further, in that they repeatedly ramp the current up and then
down, for thousands of cycles at each of a chosen set of
temperatures, and thus generate thousands of values of the
switching and retrapping currents at each of these tempera-
tures. These experiments find that the distribution of retrap-
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ping currents is very narrow and does not significantly
change with temperature. In contrast, the distribution of
switching currents is relatively broad, the mean and the
width of the distribution changing as the bath temperature—
which is set by the leads—is varied. The fact that even at a
fixed temperature and current-sweep protocol the switching
current is statistically distributed and does not have a sharp
value is a reflection of (and therefore a window on) the col-
lective dynamics of the superconducting condensate in the
nanowire. The condensate is seen to be a fluctuating entity,
evolving stochastically in time and, at random instants, un-
dergoing phase-slip events. The goal of the present work is to
understand the behavior of these distributions of switching
currents, and thereby gain insight into the low-temperature
rates at which thermal and quantum phase-slip fluctuations
occur. We now proceed to motivate the physical mechanism
for switching, and thus set the stage for the remainder of this
paper.

Distributions of switching currents were first studied in
the context of Josephson junctions, in work by Fulton and
Dunkleberger.'* In particular, these researchers found that
the width of the distribution decreased, as the temperature
was reduced. As will be discussed in detail in Sec. VII, in the
experiments on nanowires that we are considering,”'” this
width is found to increase as the temperature is reduced. A
second important difference is that the Josephson junctions
that show hysteresis are underdamped systems whereas
nanowires are expected to be overdamped, as argued also in
Ref. 8, i.e., a single phase-slip event by itself is sufficient to
cause switching in hysteretic Josephson junctions but not in
superconducting nanowires. Experimentally, the observation
of voltage tails,'®!>16 i e., small but nonzero voltages across
current-biased nanowires in the superconducting state, veri-
fies the occurrence of multiple phase slips prior to the
switching event, and indicates that the wire is in the over-
damped regime. The main consequence of these arguments is
that while in the experiments reported by Fulton and Dunkle-
berger the rate of switching is essentially given by the rate "
at which individual phase slips occur, in the case of nano-
wires the switching rate is generically found to be smaller
than I'. Tinkham et al.® have proposed a physical mechanism
that accounts for the fact that hysteresis in observed, in spite
of the overdamped dynamics of the wire. According to this
mechanism, the phase-slip fluctuations are resistive but, be-
cause of the overdamping, they are not by themselves ca-
pable of causing switching to a resistive (i.e., normal) state.
However, the resistance coming from the phase-slip fluctua-
tions is associated with Joule heating. If this heating is not
overcome sufficiently rapidly (e.g., by conductive cooling)
then it has the effect of reducing the depairing current, ulti-
mately to below the applied current, thus causing switching
to the highly resistive state. We shall concentrate on the case
of free standing wires, in which the only available cooling
mechanism is the conduction of heat from the wire to one of
the superconducting leads, which play the role of heat baths.
In the following sections, we discuss in more detail how
bistability and hysteresis come about within the framework
of this physical picture. Along the way, it should become
clear how, within this picture, switching induced by multiple
phase slips can essentially be interpreted in terms of the
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number of phase slips needed to cause a kind of thermal
runaway instability of the superconducting state.

III. BUILDING A MODEL FOR HEATING BY PHASE
SLIPS

The goal of this section is to construct a theoretical model
of the stochastic dynamics that leads to the switching of
current-biased nanowires from the superconductive to the re-
sistive state. We begin by reviewing the theory of the steady-
state thermal hysteresis as set out in Ref. 8. We continue by
replacing the steady-state heating of the wire by heating via
discrete stochastic phase slips. The main result of this section
is a Langevin-type stochastic differential equation that de-
scribes the dynamics of the temperature within the wire.

A. Thermal hysteresis mechanism

The thermal mechanism for hysteresis in superconducting
nanowires was originally proposed by Tinkham et al.® The
qualitative idea of this mechanism, along with its relevance
to experiments on superconducting nanowires, was discussed
in the previous section. In the present section we set up the
quantitative description of the mechanism by giving a brief
account of their work, and thus set the stage for our stochas-
tic extension of it. Their description rests on the premise that
the temperature of the wire is controlled by a competition
between (i) Joule heating and (ii) cooling via the conduction
of heat to the baths (leads). If ®(x) is the temperature at
position x along the wire of length L and cross-sectional area
A, then the power per unit length dissipated due to Joule
heating at a bias current / is taken to be

PR(O(x),])

AL ()

Qsource(-x) =
where the function R(®’) is to be understood as the resis-
tance of an entire wire held at a uniform temperature ©®(x)
=0’. On the other hand, as the wire is suspended in vacuum,
the heat is almost exclusively dissipated through its conduc-
tion from the wire to the superconducting leads that are held
at a temperature 7}, and which play the role of thermal bath.
The heating and cooling of the wire is described by the cor-
responding static heat conduction equation,

Qsource(x) == ax[Ks((a)ax@(x)] (2)
B IK () ) .
=g (%0 -K(0)750, (3)

where K () is the thermal conductivity of the wire [The
first term on the right-hand side (RHS) of Eq. (3) was absent
in Ref. 8]. This equation is supplemented by the boundary
conditions ®(*L/2)=T, at the wire ends, x=* L/2, and we
solve it numerically via the corresponding discretized differ-
ence equation.

It was found in Ref. 8 that Eq. (3) yields two solutions for
a certain range of I and T},. The nonlinear dependence of the
resistance R on temperature, which is characteristic of a su-
perconducting nanowire, is at the root of this bistability. This
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bistability in turn furnishes the mechanism for the thermal
hysteresis in the -V characteristic; the two solutions corre-
spond to the superconducting (cold solution) and the resis-
tive (hot solution) branches of the hysteresis loop. To obtain
the hysteresis loop at a given bath temperature 7},, one begins
by solving Eq. (2) to obtain ®(x) at a bias current sufficiently
low such that the equation yields only one solution. Next, by
using the solution @(x) from the previous step to initialize
the equation solver for the next bias-current step, the locally
stable solution of Eq. (2) is traced out as a function of I by
tuning the bias current first up and then down. The -V loop
is thus traced out by calculating the voltage,

L/2
V= J dxIR(O(x),1) 4)

-L/2

at each step.

The numerical analysis of Eq. (2) requires a knowledge of
R(0,I) and K,(®), which serve as input functions for the
theory. A discussion of these input functions and other pa-
rameters is given in Appendix A. In Ref. 8, the linear-
response resistance measured at 7,=0 was used for R(©,1).
However, R(0,1) depends also on the value of the bias cur-
rent /. Moreover, we find that by incorporating deviations in
R(©,]) from the linear-response regime, we are also able to
obtain a better fit with the experiments considered in this
paper (see Ref. 10 and Appendix A).

B. Heating by discrete phase-slip events: Derivation of
Langevin equation

In Sec. IIl A, we described the static theory of thermal
hysteresis as was discussed in Ref. 8 in the context of ex-
periments on MoGe nanowires. Let us now go one step fur-
ther and include dynamics by considering the time-
dependent heat diffusion equation,

C,(0)3,0(x.1) = A[K(©)2.0(x, )] + Qsource: (5

where the specific heat C,(®) enters as an additional input
function. This differential equation can be derived in the
standard way, by using the continuity equation,

V. jQ + (9IQ = Qsource (6)

for the heat current,
Jo=-K(0)V0O, (7)

together with the energy density,

O(x)
QE] C,(0")d0’. (8)

However, as long as we assume that the wire is heated by
the source term given by Eq. (1), the dynamic formulation
turns out to be inadequate for our purposes, as should be-
come clear from our analysis and results. Such a source term
assumes that the wire is being continually heated locally as a
result of its resistivity R(®(x),)A/L at any given position x
along the wire. Is this assumption of continual Joule heating
correct? To answer this question we need to deconstruct the
resistance and get to its root. In Sec. II we have dwelt upon
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phase-slip fluctuations in detail. There, we have emphasized
the essential point that it is the resistive phase-slip fluctua-
tions that are responsible for the characteristic resistance of a
quasi-one-dimensional wire. Thus, one should consider the
Joule heating as being caused by individual, discrete phase-
slip events.

Let us then explicitly consider discrete phase-slip events
(labeled by i) that take place one at a time at random instants
of time #;, and are centered at random spatial locations x;. By
using the Josephson relation

d¢p 2eV 2wV

S ©)
@,

relating the voltage pulse V(¢) to the rate of change in the
end-to-end phase difference across the wire ¢, we arrive at
the work done on the wire by a phase slip, viz.,

2
h
Wps=fdtIV=If dp— =Dyl (10)
0 2e

where ®y=h/2e is the superconducting flux quantum.
Hence, a single phase slip (or antiphase slip), which corre-
sponds to a decrease (or increase) in ¢ by 27, will heat (or
cool) the wire by a “quantum” of energy W,,. By using this
result we can now write down a time-dependent stochastic
source term,

Qsource(x’t) = %2 O'l-F(X - )C,-) 5(t - ti)’ (1 1)
where F(x—x;) is a spatial form factor, of unit weight, repre-
senting the relative spatial distribution of heat produced by
the ith phase-slip event, and o;= =1 for phase (antiphase)
slips. The probability per unit time I'.. for antiphase (phase)
slips to take place depends on the local temperature ®(x,?)
and the current /.

Now, instead of using the continual Joule-heating source
term, Eq. (1), let us use the source term given by Eq. (11).
Instead of being a deterministic differential equation, the
heat diffusion equation (5) becomes a stochastic differential
equation for T(x,f). We thus have a Langevin equation with
stochasticity, in one space and one time dimension, with a
“noise” term that is characteristic of a jump process.

Let us pause to understand the connection between the
two source terms. By using the Josephson relation (9), we
can express the resistance as

R(@©.1)= Y= 1 20dd_DIOD (12)
I 12w dt 1
and use it to rewrite the continual Joule-heating source term,
Eq. (1), as
%0urce=w7 (13)
’ AL

where I'=I"_-T", is the net phase-slip rate for the entire
wire. Let us assume that a phase slip only affects its local
neighborhood, i.e., F(x—x;) ~ 8(x—x;). Then, if we take the
continuous time limit of Eq. (11) by assuming that the phase
slips are very frequent and that Q,,— 0, the two source terms
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would indeed become equivalent (as can also be seen for-
mally by taking the limit ®;,— 0).

We now make a brief remark about the switching current.
The static theory of hysteresis that was discussed in the pre-
vious subsection has a single, well-defined value of the
switching current, which corresponds to the value of the bias
current at which the low-temperature (superconductive) so-
lution becomes unstable. On the other hand, we see from the
theory discussed in the present subsection that the random-
ness in x; and t; generates a sfochasticity in the switching
process. The full implications of the stochastic dynamical
theory will be discussed in the following sections.

C. Simplified model: Reduced Langevin equation

In principle, one can proceed to study the physics of the
stochastic switching dynamics of a current-biased nanowire
by using the dynamics of Eq. (5) together with stochastic
source Eq. (11), both derived in the previous subsection. In
practice, however, it is not easy to solve the full Langevin
equation with both spatial and temporal randomness. In the
present subsection we derive a simplified model and argue
that it is capable of capturing the physics essential for our
purposes.

We concentrate on wires that are in the dirty limit, for
which the mean-free path is much shorter than the coherence
length, which is shorter than the charge imbalance length
required for carrier thermalization, which itself is somewhat
shorter than the nanowire length L. In addition to restrictions
on length scales, we assume that the time for a phase slip (
~17g.) and the quasiparticle thermalization time 7 are both
smaller than the wire cooling time, i.e., the time it takes the
heat deposited in the middle of the wire by a phase slip to
diffuse out of the wire.

We will make a series of simplifications as follows:
(1) Due to the presence of the superconducting leads at two
ends, as well as edge effects, it is more likely that the phase-
slip fluctuations in the wire are centered away from the wire
edges. We thus assume that the source term is restricted to a
region near the center of the wire. (2) We assume that the
heating takes place within a central segment of length /, to
which a uniform temperature 7 is assigned. Note that the
total length L may be allowed to differ slightly from the
geometric length of the wire, in order to compensate for the
temperature gradients in the lead at the wire attachment
points. (3) We assume that heat is conducted away through
the end segments, each of which are of length (L—1)/2. As
an additional simplification, we ignore the heat capacity of
these end segments. (4) To simplify the problem further, we
make use of the fact that the probability per unit time (i.e.,
the characteristic rate) I", for an antiphase slip to take place
is much smaller than the rate I'"_ for a phase slip to take
place, and we thus ignore the process of cooling by antiphase
slips. To account indirectly for their presence, we use a re-
duced rate I'=T"_—T", instead of I'_. This ensures that the
discrete expression for Q correctly reduces to the continual
Joule-heating expression.

With the simplified model defined above, the description
of superconducting nanowires reduces to a stochastic ordi-
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nary differential equation for the time evolution of the tem-
perature T of the central segment,

dar
= oL T)(T =Ty + (T, 8t =r).  (14)
This equation can be regarded as a spatially reduced
Langevin-type equation which is a counterpart to the full,
spatially dependent Langevin-type equation (5) and, corre-
spondingly, has a spatially reduced version of the full source
term, Eq. (11). The second term on the RHS of Eq. (14)
corresponds to (stochastic) heating by phase slips, and the
first to (deterministic) cooling as a result of the conduction of
heat from the central segment to the external bath via the two
end segments. The temperature-dependent cooling rate
a(T,T,) is obtained by comparing the heat currents through
the end segments to the thermal mass of the central segment,
where the heat currents through the end segments are found
by solving the heat equation in the end segments, subject to
the boundary conditions that T(0)=T(L)=T, and T(LT_Z
=T(L—L7_l)=T. The cooling rate may be expressed in terms
of the integral,

T
4 1 de’KS(T’). (15)

) = et T

If 7; and T; are temperatures of the central segment before
and after a phase slip then we can express the temperature
“impulse” due to a phase slip, ie., Ty—T;=n(T;,I)
= 7(T},1), as function of either T; or Ty (depending on the
context) by using

T,
Alf ICU(T’)dT’ = 0. (16)
T.

1

To summarize, in this section we have derived a simpli-
fied model that is described by the reduced Langevin equa-
tion (14). The central assumption that we used to build this
simplified model is that phase slips predominantly occur in
the center of the nanowire or at least that their exact spatial
locations are unimportant. This assumption is appropriate for
shorter nanowires, in which we do not have several distinct
locations along the wire at which a switching event may
nucleate. Specifically, if the wire length does not greatly ex-
ceed the charge imbalance length (which itself is assumed to
be much larger than the coherence length) then, independent
of where a phase slip occurs, the temperature profile in the
wire after the phase slip will be similar, and we are able to
apply our simplified time-only model.

IV. BASIC PROPERTIES OF THE SIMPLIFIED MODEL:
BISTABILITY AND SWITCHING

The goal of this section is to explain the basic properties
of the stochastic model that was formulated in the previous
section and is described by the reduced Langevin equation,
Eq. (14). First, we show explicitly that the competition be-
tween the heating and cooling terms leads to the emergence
of bistability. Next, we show that the stochastic character of
the heating term can lead to switching between the two meta-
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FIG. 2. (Color online) Effective potentials for various bias cur-
rents (0.175,0.195,0.215,0.235,0.255 wA) at fixed lead tempera-
ture T,=1.2 K (Ref. 17). The inset shows the details of the local
maximum of the effective potential and corresponds to an enlarge-
ment of the region indicated by the box in the main plot.

stable states. Then, to characterize this switching we relate
the lifetime of the superconducting state to the mean first
passage time (MFPT) for the temperature T in the central
segment to exceed a certain critical value T™.

We begin by reminding the reader that the theory of Ref.
8, described by Eq. (3) with the source term given by Eq. (1),
is the static continual-heating version of the theory described
by Eq. (5) with the source term given by Eq. (11). The con-
nection is made evident via Eq. (13). As has been shown at
the end of Sec. IIl A, for certain values of T}, and [ the
continual-heating theory describes a bistable system having a
low-temperature  superconducting branch and a high-
temperature resistive branch. The fluctuating theory de-
scribed by Egs. (5) and (11), in turn, allows for processes
that move the system between the two metastable states.

Analogously, there is a simplified continual-heating
theory associated with the spatially reduced theory described
by the reduced Langevin equation (14). To obtain the
continual-heating version of Eq. (14), in analogy to Eq. (13),
we replace the term carrying the sum over the delta functions
by the phase-slip rate I'(7,1). That is, if we ignore the dis-
creteness of phase slips, the dynamics of the temperature is
described by

‘;—? =— T, T,)(T-Ty) + n(T.DT(T.1). (17)

We may think of this equation as describing the motion of an
overdamped “particle” of position 7(¢) at time 7, moving in
the fictitious potential U(T), i.e.,

dTr aU(T

ar__ovn "
dt aT

In Fig. 2 we have plotted the form of this potential for sev-
eral different values of the current at 7,=1.2 K for param-
eters corresponding to a typical nanowire. At low values of
the bias current, the fictitious potential U(T) has only one
minimum, which corresponds to the superconducting, low-
temperature state with 7=T,. As the bias current is in-
creased, a second minimum, corresponding to the resistive
state, develops at higher temperatures, and the system be-
comes bistable. For the bistable regime we label the tempera-
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FIG. 3. (Color online) Schematic depiction of the effective po-
tential for the bistable case, showing the labeling scheme for the
various temperatures: the bath temperature T, effective-potential
minima corresponding to the superconducting state 7. and the re-
sistive state Ti,, the local maximum of the effective potential T,
and the mean first passage time point 7°.

tures of the two minima of the effective potential by 7. and
T, and the temperature of the local maximum that separates
them by T§,, as depicted schematically in Fig. 3. Further
increase in the bias current results in the high-temperature

minimum gradually becoming deeper and the low-
temperature minimum shallower. Eventually, the low-
temperature minimum disappears and only the high-

temperature minimum remains.

Consider a system biased such that it is bistable in the
continual-heating description. If the fluctuations due to the
discreteness of phase slips are weak, i.e., the temperature rise
caused by an individual phase slip is small as compared to
the temperature difference between the two metastable
minima, then the system highly likely to remain in which-
ever of the two minima it started in. However, very rarely,
the intrinsic fluctuations in the times between phase slips will
drive the system from one local minimum to the other.

A picture of a switching event can be constructed by ana-
lyzing the real-time dynamics of the Langevin equation. A
typical trace of the temperature of the central segment as a
function of time 7(z), evolving according to Eq. (14), is de-
picted in Fig. 4. To obtain this trace we integrate Eq. (14)
forward in time, numerically, starting with the initial condi-
tion T(r=0)=T,. Phase slips correspond to sharp rises of

3.2
30f %3
T -
o 2.8F
= 22
5 2.6}
o
§ 2.4F
2.2
0 5 10 15
Time (ps)

FIG. 4. (Color online) Trace of a typical central segment tem-
perature trajectory 7(¢), with a switching event at t~20 ps (Ref.
17). Overlaid on the traces are three red horizontal lines showing
the temperatures Ty (lowest), Ty, (middle), and T, (highest) corre-
sponding to the superconducting minimum, the saddle point, and
the resistive minimum of the effective potential. The inset shows a
blow up of the boxed region of the main figure.

PHYSICAL REVIEW B 80, 214525 (2009)

T(z), and cooling to gradual declines of 7(r). The two
minima, T, and T, as well as the local maximum T, of the
fictitious potential U(T), are indicated by the red horizontal
lines. From the trace, it can be seen that the temperature of
the system starts by spending a long time in the vicinity of
T, until a burst of phase slips pushes it “over” T, and the
temperature quickly progresses toward the vicinity of 7.

The fundamental quantity of interest is the mean switch-
ing time, i.e., the average time required for the wire to switch
from being superconductive to resistive. Assuming that the
entire wire has temperature 7=7, when the current / is
turned on at time =0, we define a switching event as the first
time at which T, the temperature of the central segment of
the wire, exceeds the temperature T°, where TSP<T*STrs.
With this definition, the mean switching time corresponds to
the mean first passage time «T,— T") to go from the bath
temperature T to the temperature 7*. In the case of weak
fluctuations, the problem is indeed a barrier crossing prob-
lem, i.e., the system spends a long time in the vicinity of the
starting temperature 7y, ~ T, until a burst of phase slips pro-
pels it over the barrier at T.. After T, is exceeded, the sys-
tem moves quickly (compared to the barrier-crossing time)
toward T,. Therefore, the mean switching time will only
have a weak dependence on T, provided T™ is significantly
higher than T, as this is the temperature range in which the
system is moving relatively quickly toward the high-
temperature steady state.

V. FORMALISM FOR ADDRESSING SWITCHING
DYNAMICS: MEAN FIRST PASSAGE TIME

In the previous section, we have shown that the MFPT for
the temperature 7 in the central segment to exceed a critical
value 7" can be used to characterize the switching from the
superconducting to the resistive state. In this section, we de-
velop the tools for computing the MFPT in two steps. In the
first step, we derive the master equation associated with the
Langevin equation (14). In the second step, we use the mas-
ter equation to obtain a delay-differential equation directly
for the MFPT A(T)[=n(T— T")] as a function of the initial
temperature 7.

A. Master equation

We now derive the master equation associated with the
Langevin equation (14). The master equation is a delay-
differential equation that describes the evolution of the prob-
ability density P(T,t) for the central segment of the nanowire
to have temperature 7" at time r. Note that by the term “de-
lay” we actually mean a delay in temperature. That is, the
evolution of P(T,7) is nonlocal in temperature but local in
time. Before delving into the derivation, we quote the result,

G,P(T,1) = 9 (T = Ty)a(T)P(T,1)] = T(T) P(T, 1)
+ [T - HT)]PLT = 7(T).t][1 - 9,7(T)], ~ (19)

where the first (i.e., the transport) term corresponds to the
effect of cooling and the last two terms correspond to the
effects of heating. We remind the reader that 7(7) is defined
as the temperature change due to a phase slip, such that after
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FIG. 5. (Color online) Schematic showing the probability
P(T;,1) to find the system in the temperature interval (7;,7;+AT)
indicated by gray blocks. Processes involved in the rate of change
in the probability in the ith interval (green block) are represented by
blue arrows (cooling) and red arrows (heating by phase slips). The
boundary conditions at the ends of the temperature interval (T, T")
for computing the mean first passage time are indicated in purple.

the phase slip the central segment temperature becomes 7.

The probability distribution P(T,t+dr) at temperature T
and time ¢+dt is related to P(T,t) at an earlier time ¢ by the
two effects: (a) cooling and (b) heating, as summarized in
Fig. 5. To understand these effects, we begin by discretizing
the temperature interval into equally wide slices 7; of width
dT, indexed by i.

To understand the effect of cooling, we consider the
change in the probability of finding the system in the ith
temperature slice, P(T;,t+dt)— P(T;,t). Due to cooling, some
of the probability in slice i+ 1 will move into the ith slice at
arate (T, —T,)a(T;,,)/dT. Concurrently, some of the prob-
ability slice i will move into slice i—1 at a rate (7;
—T,)a(T;)/dT. These two processes are indicated by the blue
arrows in Fig. 5. By adding these two rates, we find

1
dP(T;,1) = E,[(Tm = Ty)a(Ty1) P(Tiy51)

—(T; = Ty) T P(T;,1)]. (20)

To find the continuum version of this equation we take the
limit dT— 0, thus arriving at

9P(T,1) = 0,{(T - Ty) a(T)P(T,1)],

where we have identified the definition of the 7 derivative
when taking this limit on the right-hand side of Eq. (20).
On the other hand, heating is caused by discrete phase
slips, which occur at a temperature- and current-dependent
rate I'(7,I). Heating decreases the probability in the ith slice,
P(T;,1), at the rate I'(T;,I)P(T;,t), as the probability is
boosted to higher temperatures by phase slips. On the other
hand, P(T;,t) increases, as probability from lower tempera-

tures, 7= T;— 7(T}), gets boosted to T; due to heating. These
two heating processes are indicated by the red arrows in Fig.
5. To compare these two rates, we must take care of the fact
that the boost is temperature dependent, and thus there may
be some “stretching” of the corresponding temperature inter-
vals before and after the boost. Consider the temperature
interval (T;,T;+dT) after the boost. What is the correspond-
ing temperature interval before the boost? Using the “un-
boost function” 7, we find the interval to be

[T; - 3(T),T;+dT - 7T, + dT)]. (21)

Therefore, the width of the interval before the boost is ap-
proximately [1-d;7(T})]dT and not dT. Thus, after taking
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the continuum limit we find that the probability density P(7T)
increases at the rate

[1 = arH(DIAT - HDIPLT - (1), 1].

Combining the rates of in and out flux of the probability
density due to cooling and heating effects, we obtain the
master equation given as Eq. (19).

B. Mean first passage time

The fundamental quantity that we want to compute is
the MFPT #(T,— T"). In this section, we use the master
equation (19), as a starting point for obtaining a delay-
differential equation directly for «(7)=nT—T"). We pro-
ceed using a straightforward generalization of the standard
procedure to systems with jump processes (i.e., those that
have master equations with delay terms).!%1°

We begin by supplementing the master equation with the
boundary conditions appropriate for computing the MFPT.
When computing the MFPT, we want to remove any element
from the ensemble once its temperature reaches one of the
boundaries of the interval. Thus, we would typically impose
absorbing wall boundary conditions on both sides of the in-
terval at T}, and T%, i.e., P(T,t)=P(T",r=0). However, be-
cause we have a jump process, which transfers probability
density from lower temperatures to higher temperatures, we
must instead impose the absorbing segment boundary condi-
tion,

P(T,1)=0, for T>T", (22)

beyond the upper end of the interval so as to capture systems
in which the temperature gets boosted beyond the upper end
of the interval by the jump process. The dynamics described
by Eq. (19) is also peculiar in another way. If we choose Tj,
as the temperature at the lower end of the interval then there
are no processes that can cause a passage through the lower
end of the interval, as can be seen from the Langevin equa-
tion (14). Thus, at the lower end of the interval, instead of
the absorbing wall boundary condition, we must impose the
no flux boundary condition, i.e.,

(9TbP(Tb,t) = 0 (23)

These boundary conditions, Egs. (22) and (23), are indicated
(in purple) in Fig. 5. We note that the probability density may
be discontinuous at the upper boundary, due to the jump
process.

With the boundary conditions in hand, we consider the
integrated probability-density function

T
G(T',1) = f dT P(T,HT',0). (24)
Ty

Here, we have generalized from the probability P(7,1) to the
conditional probability P(T,7|T’,0) of finding the system to
be at temperature 7 at time ¢, subject to the boundary condi-
tions, if it started out at temperature 7" at time 0. Then the
function G(T',f) measures the probability that a system that
started out at temperature 7’ has never left the temperature
interval (7}, T*) while the time ¢ has passed. In particular, the
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rate of first passages out of the interval (T,,,7") at time ¢ is
given by —d,G(T",1). Therefore, the MFPT 7(T”) for a sys-
tem that starts at temperature 7" is given by

r(T’)=fwdt - 9,G(T",1)] (25)
0
=fo dt G(T',1), (26)
0

where the surface term resulting from an integration by parts
is assumed to be zero, as all the “particles” are assumed to be
able to leave the interval in the long-time limit.

Next, we obtain a differential equation for 7(x) by appro-
priately integrating the backward-in-time master equation,
i.e., the equation

Oy P(T,t

T'.t'")=(T' = T,)a(T") oy P(T, 1
+ F(T’){P(T,t|T’,t')
— P[T T + »(T"),t'T}. (27)

T,t")

Taking advantage of the fact that the present stochastic pro-
cess is homogeneous in time, we transfer the time derivative
on the left-hand side of Eq. (27) to the ¢ variable from the '
variable,

3y P(T,t

T',t'")=+3d,P(T,t—t'|T',0) (28)

=—9,P(T,t—1'|T",0). (29)

By substituting Eq. (29) into Eq. (27) and integrating both
sides with respect to T’ over the interval (T, T"), we arrive
at an equation for G(T",1),

GG(T' 1) = (Ty = Tl T )0y G(T" 1) (30)

-T(MGT ) -G(T" + 9(T").0]. (31

Finally, we integrate over all times to obtain an explicit
delay-differential equation for the MFPT,

(T, =T AT {T") = D(T)[AT') = o(T" + 9(T") ] =- 1,
(32)

where we have used Eq. (26) to identify 7(7’) on the left-
hand side, and the assumption that P(7,z|T",0) tends to zero
in the long-time limit on the right-hand side.

The delay differential equation (32), together with the
boundary conditions (22) and (23), may be conveniently
solved numerically by using the shooting method. The key to
this method lies in taking advantage of the fact that in the
nonlocal term I'(T")#(T' + 5(T")), the factor n(T") is always
positive. Therefore, by integrating from high temperatures to
low temperatures, we can always look up the value of the
nonlocal term from the region where integration has already
been carried out. We implement the shooting procedure as
follows: (1) pick a value for #(T"); (2) shoot toward lower
temperatures to obtain &TbT(Tb); and (3) adjust 7(T*) until the
boundary condition dr, 7(7)=0 is satisfied.
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FIG. 6. (Color online) Numerical solutions of the mean first
passage time Eq. (32), as functions of the central segment tempera-
ture 7, for bath temperature 7,=1.2 K and several values of the
bias current between 0.2 and 0.725 uA (solid pink) (Ref. 17). For
comparison, superposed on the MFPT plots are the effective poten-
tial that appears in Eq. (18) (dashed red lines). The solid blue lines
correspond to the zero of the effective potential. The hash marks on
the temperature axes correspond to the sequence of temperatures
given by Eq. (33).

VI. SWITCHING BEHAVIOR OF SUPERCONDUCTING
NANOWIRES: RESULTS AND INTERPRETATIONS

A. Properties of solutions of the mean first passage time
equation

The mean first passage time 77" — T*) for a system that
starts out at temperature 7’ to exceed the temperature T is
described by the delay-differential Eq. (32), together with the
boundary conditions (22) and (23). The mean switching time
corresponds to the MFPT (T, — T*). To understand the so-
lutions of the MFPT equations, we remind the reader that 7™
must be chosen to be a temperature sufficiently far above the
saddle-point temperature Ty, of the effective potential (cf.
Fig. 3) that the MFPT has only a weak dependence on T*.
Solutions of the MFPT equations for several values of the
bias current are plotted in Fig. 6, along with the correspond-
ing effective potentials. The solutions have the following
structure: (1) In the temperature interval T, <T<Tj, the
MEFPT is largely independent of the temperature 7. (2) For T
in the vicinity of T, the MFPT drops sharply. (3) In the
temperature interval T, <T<(T",T,) the MFPT is again
largely independent of 7.

The origin of this structure can be seen in the real-time
dynamics depicted in Fig. 4. Systems that start at tempera-
tures below the barrier temperature 7§, in the effective po-
tential must diffuse over it, which is a very slow process. The
MFPT in the interval T, <T<T, is correspondingly large.
Furthermore, the MFPT is largely independent of the initial
temperature, as this interval is essentially ergodic, i.e., a sys-
tem that starts in this interval typically spends a lot of time
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exploring the entire interval before leaving it. On the other
hand, a system that start at some temperature above the bar-
rier in the effective potential rolls down the potential gradi-
ent relatively quickly before reaching 7. Therefore, in terms
of temperatures increasing from 7}, the MFPT starts out es-
sentially constant over the ergodic interval, and then drops
sharply as T crosses the barrier in the effective potential,
before finally flattening out at temperatures higher than T,

We note that it is numerically advantageous to set 7™ to be
as low as possible in the high-temperature (i.e., flat MFPT)
regime so as to avoid instabilities in the numerical integra-
tion of Eq. (32).

B. Number of phase slips in a thermal runaway train

In this section, we consider the question of exactly how
many phase slips it takes to form a runaway train. Let us start
our discussion by first turning off the (deterministic) cooling
term in the stochastic equation (14). If we now start with an
initial temperature 7|, then the sequence

To. To+ 9(Ty), Ty + 7(To) + Ty + 17(Tp)),...  (33)

defines the discrete sequence of values that phase slips would
cause T to jump to, as marked on the horizontal axes in Fig.
6 for Ty=T,. The probability per unit time I'(7) to make a
jump changes at each step, and so does the size 7(7) of the
jump, owing to their explicit dependence on temperature. On
the other hand, if we turn off the heating term then we would
have a deterministic problem in which 7 would decay at a
rate a(7), from its initial value Ty> T, to the bath tempera-
ture Ty, It is the competition between the discrete heating and
continuous cooling that makes for a rather rich stochastic
problem.

The number of tick marks [see sequence (33)] between Tj,
and T* (see Fig. 6) is nothing but the number N(T},I) of
phase-slip events required to raise the temperature of the
central segment from 7T, to T in the absence of cooling.
Accordingly, N(Ty,,I) also provides an estimate of the num-
ber of phase-slip events needed to overcome the potential
barrier, if the time span of these events were insufficient to
allow significant cooling to occur. “Thermal runaway”—
heating by rare sequences of closely spaced phase slips that
overcome the potential barrier—constitutes the mechanism
of the superconductive-to-resistive switching within our
model. As the number N(T,,I) of phase slips needed in-
creases, the total number of phase-slip events taking place
before a switching event occurs, and correspondingly the
value of the mean switching time 7, (T},[), may indeed be-
come quite large.

The map of the number N(Ty,I) of phase slips needed
over the I-T}, plane was presented in Fig. 3 of Ref. 11. This
map was found to contain two important points. First, for
experimentally relevant switching, the typical value of
N(T,,,I) was only ten or fewer. The smallness of this number
highlights why going beyond continuous Joule heating to the
discrete phase-slip model is crucial for our analysis. Second,
there is a region in the I-T} plane within which the occur-
rence of just one phase slip is sufficient to cause the nano-
wire to switch from the superconductive to the resistive state.

PHYSICAL REVIEW B 80, 214525 (2009)

We denote this region as the “single phase-slip switching
regime.” A switching measurement in this range can in fact
provide a way of detecting and probing an individual phase-
slip fluctuation.

C. Mean switching time

Let us begin by considering the single phase-slip switch-
ing regime identified in the previous section. In this regime,
the value of the mean switching time is dictated purely by
the probability for a phase-slip event to occur at a given bath
temperature T}, and by the bias current /. The mean switching
rate is thus identical to the phase-slip rate (which is an input
quantity in our theory):

7.'=T, “single phase-slip switching regime.”  (34)

As we move beyond the single phase-slip switching re-
gime, several phase-slip events become necessary for switch-
ing. The mean switching rate Ts_l thus begins to deviate from
I to a value smaller than I'. The deviation of 7' from I can
be interpreted in terms of the evolution of N(Ty,l), which
was discussed in the previous section, and in general leads to
a sharper drop of the switching rate with decreasing current,
and thus a narrowing of the switching-current distribution.

D. Switching-current distribution

The mean switching time 7, in bistable current-biased sys-
tems can be measured directly by performing waiting-time
experiments. Alternatively, 7, can be extracted from
switching-current statistics.'* As described in Sec. II, the
switching-current distribution can be generated via the re-
peated tracing of the I-V characteristic, ramping the current
up and down at some sweep rate

dl
—==xr.

dt
The sweep-rate-dependent probability P(I,Ty;r)dl for the
event of switching (from the superconductive to the resistive
branch) to take while the current is in the range I to I+dI is
explicitly related to the mean switching time 7, via the rela-
tion

|| [ o]
P(Ty.Iir)dl=| 7, (To,,D)— || 1 = | P(Tp,I';r)dl’ |. (35)
r (

0

The term in the first pair of parentheses corresponds to the
probability for switching to happen within the ramp time
while the term in the second pair of parentheses corresponds
to the probability that the wire has not already switched be-
fore reaching the bias current I. By using Eq. (35) we obtain
the distribution of switching currents in superconducting
nanowires in terms of the theory presented in the present
paper. That is, we can go back and forth between the
switching-current distributions and the switching rates, as
will be discussed in the next section and is illustrated in Figs.
8 and 11 for a typical nanowire.
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Upon raising 7}, one would naively expect the distribu-
tion of the switching currents to become broader for a model
involving thermally activated phase slips. Such broadening
of the distribution is not observed experimentally, as will be
discussed in the next section. Instead, the distribution width
shows a seemingly anomalous decrease, see Fig. 8.

We can understand this striking behavior above T} (r) via
the following reasoning: the larger the typical number of
phase slips in sequences that induce superconductive-to-
resistive thermal runaway, the smaller the stochasticity in the
switching process and, hence, the sharper the distribution of
switching currents. This anomalous temperature dependence
of the width of the switching-current distribution, along with
the existence of a regime in which a single phase-slip event
can be probed, are the two key predictions of our theory. In
the following section, we proceed to carry out a detailed
comparison of between this theory and the recently per-
formed experiments discussed in Sec. II across all tempera-
ture regimes.

VII. COMPARISON WITH EXPERIMENTS

In this section, we compare results from the experiments
described in Sec. II with predictions of our theory presented
in Secs. III-VI. We show that our theory is both qualitatively
and quantitatively consistent with experimental observations.
The main implications of this comparison are that (1) the
switching-current distribution width does indeed increase as
the temperature is decreased; (2) there is a single phase-slip-
to-switch regime at low temperatures; and (3) thermally ac-
tivated phase slips, alone, are insufficient to fit the depen-
dence of the mean switching time on the bias current at low
temperatures. This suggests that one should include the ef-
fects of quantum phase slips (QPS) (Refs. 7, 12, and 26);
upon including quantum phase slips phenomenologically, we
obtain good fits to the experimental data in the low-
temperature regime as well. For the purposes of this com-
parison we use the data from a representative superconduct-
ing nanowire; data for more samples may be found in Refs. 9
and 10. This section is structured as follows. To establish the
validity of the thermal hysteresis model, we begin by analyz-
ing the I-V hysteresis loops. Next, we qualitatively analyze
the experimentally measured switching-current distribution.
We continue with a quantitative analysis of the experimental
data on the mean switching rate. Finally, we look at the im-
plications of the quantitative analysis, including identifying
the single phase-slip-to-switch regime and the scenarios for
quantum phase slips in the low-temperature behavior.

A. I-V hysteresis loops

We begin our analysis by comparing the qualitative fea-
tures of the experimentally measured and theoretically com-
puted current-voltage characteristics. Experimentally, it is
found that at high temperatures there is no hysteresis. As T},
is lowered, a hysteresis loop gradually opens up. Next, as the
temperature is lowered even further, the switching current
(i.e., the bias current at the superconducting-resistive transi-
tion) grows gradually while the retrapping current (i.e., the
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FIG. 7. (Color online) Comparison of I-V hysteresis loops com-
puted using central segment approximation and the full heat equa-
tions. For the case of the heat equation the wire was split into 15
segments. The steps and upturns in the high-voltage branch of the
segmented solution correspond to various segments becoming su-
perconducting, and would disappear in the continuum limit. Heat
conductivity, phase-slip rate, and geometrical parameters used are
listed in Table I.

bias current at the resistive-superconducting transition) re-
mains almost unchanged. This behavior is consistent with the
experimental observations and theory of Ref. 8, where it is
also qualitatively explained as follows. Switching is con-
trolled by the properties of the low-temperature (i.e., super-
conductinglike) solution of Eq. (2), thus switching depends
strongly on the temperature of the bath 7}. On the other
hand, retrapping is largely a property of the hotter (i.e., re-
sistive) state, and thus has only a weak dependence on Tj,.
Typical I-V curves obtained from the central segment
model [e.g., stationary solutions of Eq. (17)], as well as those
obtained from solving the heat equation, are shown in Fig. 7
for several bath temperatures T},. Following Ref. 8, the solu-
tions of the heat equation were obtained from a spatially
discretized version of Eq. (2). In both cases, the heat conduc-
tivity and the phase-slip rate were obtained from Egs. (A15)
and (Al), respectively. The theoretical curves both qualita-
tively and quantitatively reproduce the features seen in
experiments.®~'” We take a moment to point out that in fitting
the experimental data it is important to take into account the
nonlinear dependence of the phase-slip rate on the bias cur-
rent. Finally, we point out that making the central segment
approximation has little effect on the switching current found
in the hysteresis loops (for typical wires used in experi-
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FIG. 8. (Color online) Experimental data (red bar charts) and
theoretical fits (black lines) for the switching-current distributions
for various bath temperatures. To make the comparisons between
the shapes of distributions easier, we also show theoretical curves
shifted so that their means coincide with the experimental curves
(blue dashed lines). The fitting parameters used are listed in Table 1.

ments). This fact supports the validity of the central segment
approximation for modeling switching phenomena.

B. Switching-current distributions

In the experiments, every time an /-V characteristic is
measured by sweeping the bias current up and down, switch-
ing occurs at a distinct value of the bias current. By repeat-
edly measuring the hysteresis loop at a fixed bath tempera-
ture T, and current sweep rate dI/dt, one can obtain the
distribution of switching currents P(lg,,T,,dI/dt). Typical
P(ly,,T,,dl/dr) distributions, obtained experimentally, are
shown in Fig. 8. For completeness, we also show the corre-
sponding theoretical fits, which we shall describe in detail in
the next section. For a given T, switching events tend, in
general, to occur at lower bias currents than the switching
current found in the thermodynamic stability analysis of Ref.
8. The reason for this premature switching at bias currents
that are lower than the stability analysis indicates is, of
course, thermally activated barrier crossing in the form of a
phase-slip bursts. In Fig. 9 we plot the mean and the standard
deviation of the switching-current distributions measured ex-
perimentally, as well as those obtained from theoretical fits
of the simplified model. By using the tuning parameters ob-
tained from the fits, we also plot the theoretical depairing
critical current and the critical current from the stability
analysis of the simplified model Eq. (17).

As described in Sec. I, one would typically expect the
standard deviation of the switching-current distribution to
decrease with decreasing temperature, as thermal fluctua-
tions become suppressed. Such narrowing of the switching-
current distribution is expected to continue with cooling, un-
til the temperature becomes sufficiently low such that
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FIG. 9. (Color online) Hierarchy of critical and switching cur-
rents. All theoretical curves were produced using the parameters
obtained from fitting experimental data. The highest current scale is
the depairing critical current I,(7). Next, is 1,(7T), the scale for lin-
ear instability due to overheating, as described by Eq. (17). Finally,
comes the actual switching current Iy, (7). The error bars on the
switching current correspond to the 10X the standard deviation of
the switching-current distribution (the scale of the standard devia-
tion was exaggerated to make it easier to see; the sweep rate was set
to 58 wA/s). The fitting parameters used are listed in Table I.

quantum phase slips are the main drivers of the switching, at
which point the narrowing is expected to come to a halt.
Qualitatively, this would indeed be the case if switching was
always triggered by a single phase slip. However, our theory,
predicts that the situation is more complicated because the
mean switching time, and hence the width of the switching-
current distribution, is controlled by a competition between
the phase-slip rate and the number of consecutive phase slips
needed to induce switching, as described in the previous sec-
tion. Thus, qualitatively, we expect the opposite behavior at
higher temperatures. That is, in the regime of thermally ac-
tivated phase slips and at temperatures above the single
phase-slip-to-switch regime, the width of the switching-
current distribution should increase with decreasing tempera-
ture. This counterintuitive broadening of the switching-
current distributions with decreasing temperature is indeed
observed experimentally, as shown in Fig. 10.

o Exp
“Best Fit”
......... T=15

25

20F
R

10F

distribution width (nA)

0.0 0.5 1.0 1.5 20
temperature (K)

FIG. 10. (Color online) Standard deviation of the switching-
current distribution as a function of temperature. Comparison of
experimental data for a typical sample (circles) with various QPS
scenarios labeled by 7. The best fit curve was obtained by using
the parameters given in Table I, where the fit was optimized to
simultaneously capture the temperature dependence of mean
switching current and the standard deviation of the switching-
current distribution.
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FIG. 11. (Color online) Comparison of theoretical fits (lines) to
the experimental (blue dots) mean switching rates. The top panel
shows fits with thermally activated phase slips only while the bot-
tom panel includes both thermally activated and quantum phase
slips. The solid red lines correspond to multiple-phase-slips-to-
switch regime while the dashed blue lines correspond to multiple-
phase-slips-to-switch regime. The fitting parameters used are listed
in Table I.

C. Mean switching rate

As the switching-current distribution depends on the bias-
current sweep rate, in order to quantitatively compare our
theory with experimental data, we focus on the mean switch-
ing rate, which is related to the switching-current distribution
via Eq. (35). The experimentally obtained mean switching
rate 7 (I, T,) for a typical sample, along with theoretical fits,
are plotted as a function of the bias current / for different
values of the bath temperature 7, in Fig. 11. To help relate
the mean switching rate to the switching-current distribution
width, we note that for a fixed T}, the shallower the slope of
7 (1, T,) the wider the corresponds distribution. The two
main features of the experimental data plotted in Fig. 11 are
as Ty, decreases (1) the mean switching rate decreases ({/,)
increases) and (2) the slope of 7 !(I) decreases (I, distribu-
tion width becomes wider).

Two different fits to the same set of experimental data are
shown in Fig. 11. The fit shown in the top panel includes
thermally activated phase slips (TAPS) only while the one in
the bottom panel uses the fitting parameters from the top
panel but also includes QPS. The fits were obtained using the
fast switching-rate calculation routine described in Appendix
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C. The tuning parameters that were obtained from the fit are
listed in Table I and fall into two categories. The first cat-
egory is composed of the geometric model parameters, such
as the wire length while the second category controls the
“input functions,” i.e., the heat capacity, the heat conductiv-
ity, and the phase-slip rate. The expressions for these input
functions are given in Appendix A. We note that in obtaining
these fits we verified that the fitting parameters that we used
were consistent with the high-temperature R(7) data.'®

The TAPS-only fit (top panel of Fig. 11) works well at
temperatures above 1 K. In this regime the theory is able to
quantitatively explain the observed rise in mean switching
current ({Iy,)) with decreasing temperature, as well as the
peculiar increase the I, distribution width with decreasing
temperatures.

D. Single-slip-to-switch regime

In general, as the temperature is lowered and the bias
current increased, the wire tends to enter the single-slip-to-
switch regime. This regime roughly corresponds to the re-
gion of the (7, T) plane where a single phase slip heats up the
wire to T.(I), and thus the boundaries of this regime are
primarily determined by the heat capacity of the wire. Within
this regime, switching-current statistics correspond directly
to the phase-slip statistics.

Theoretical fitting indicates that at temperatures below
~1 K the wire enters the single phase-slip-to-switch regime.
This regime is indicated by the switch of the theory curves
from solid red lines to dashed blue lines in Fig. 11. In the
absence of quantum phase slips, in this regime the I, distri-
bution width should follow a more conventional behavior,
and decreases with temperature. This corresponds to the in-
crease in the slope of the mean switching-rate curves with
decreasing temperature in the single-slip-to-switch regime
(see the top panel of Fig. 11).

However, experimentally the distribution width seems to
increase monotonically as the temperature is lowered, even
in the single-slip-to-switch regime. This behavior suggests

TABLE I. Parameters used in the switching-rate model. Parameters fall into two categories: geometric
parameters and input function parameters. The former define the simplified model of the wire while the latter
define the phase-slip rate, heat capacity, and heat conductivity. Not all of these are used as tuning parameters,
as R, and L can be measured directly, and the fitting is only weakly effected by L, and L,. Fitting parameters
for a representative experimental sample (corresponding to Figs. 8—11) are displayed in the right-hand

column.

Type Parameter name Symbol Value
Geometric Wire length L 110 nm
Geometric Central segment length L, 110 nm
Geometric End segment length L, 27.5 nm
Input function Transition temperature T. 3.872 K
Input function Zero-temperature transition length & 5 nm
Input function QPS effective temperature Te=T"+T,T 0.726 K+0.4T
Input function Effective superconducting cross-sectional area Ay 320.4 nm?
Input function Effective normal cross-sectional area A, 19.0 nm?
Input function Normal-state resistance R, 2666 ()
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that there is an excess of phase slips at low temperatures.

E. Quantum phase-slip scenarios

We expect that at low temperatures quantum phase slips
will contribute strongly to the switching rate. We model the
presence of QPS by adding their rate to the rate of TAPS so
as to obtain the total phase-slip rate which goes into our
model,

L5 T) = Uppps(L,T) + Tgps(1,7).

To model the QPS rate, I'qps(/,T), we replace kzT— kp(T.,
+T,T) in I'ppps(1,T) (see Appendix A 1). Here, T, and T are
both treated as fitting parameters. Letting 7', be nonzero does
somewhat improve the quality of our fits.

We can envision several scenarios for the effect of QPS
on the switching-current distributions, and these are summa-
rized in Fig. 10. In the absence of QPS, upon lowering the
temperatures, once the single-slip-to-switch regime is
reached the distribution width will start decreasing with tem-
perature. This type of behavior is demonstrated by the 7,
=0 line in Fig. 10. However, in the presence of QPS, the
distribution width is expected to saturate at low temperature,
with the saturation value controlled by 7. If, upon cooling,
the single-slip-to-switch regime is reached before the tem-
perature reaches T, we expect the distribution width to first
increase and then decrease before saturating with decreasing
temperature (cf. the 7,=0.5 K curve in Fig. 10). On the
other hand, if 7, is reached before the single-slip-to-switch
regime is reached, we expect the distribution width to in-
crease monotonically with decreasing temperature (cf. the
T.=1.0 and 1.5 K curves in Fig. 10).

To include QPS in our fitting, we started with parameters
obtained by fitting the mean switching-rate curves at high
temperatures (7> 1 K), as described in the previous section
(i.e., see top panel of Fig. 11). Next, we optimized 7" and T
to obtain the best possible fit to the mean switching-rate
curves at low temperatures as well. The optimal values thus
obtained were 7,=0.726 K and 7;=0.4, which corresponds
to the fit shown in the bottom panel of Fig. 11 and the curve
labeled “best fit” in Fig. 10.

To fit the experimental data, we must be able to simulta-
neously match both the mean and the standard deviation of
the switching-current distribution as a function of tempera-
ture. However, we have not been able to get quantitative
agreement with both of these quantities, simultaneously, in
the low-temperature regime. The parameter values of T,
=0.726 K and 7;=0.4 result in a good fit of the mean but
not the standard deviation (see Figs. 10 and 11) while the
values of 7,=1.5 K and 7;=0 result in a good fit of the
standard deviation (see Fig. 10) but not the mean (not
shown).

We conclude this section by noting that, for the nanowire
that we fitted, our fitting seems to favor the QPS scenario
where 7, is higher than the temperature corresponding to the
onset of the single-slip-to-switch regime.

VIII. CONCLUDING REMARKS

In conclusion, we have developed a quantitative theory of
stochastic switching from the superconducting to the normal
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state in hysteretic superconducting nanowires. Our theory
describes the dynamics of the heating of nanowires by
random-in-time phase-slip events, and the cooling of the
wire by heat conduction into the leads. In general, a train of
phase slips, sufficiently closely spaced in time can cause the
nanowire to overheat and switch from the low-temperature
(superconducting) branch to the high-temperature (normal)
branch.

The main achievement of our theory is that it quantita-
tively describes the unexpected increase in the switching-
current distribution with decreasing temperature, as is ob-
served in experiments.

Our theory also predicts that there is a single-slip-to-
switch regime at low temperatures. In this regime, a single
phase slip always triggers a switching event; thus, by study-
ing the switching statistics one has direct access to the phase
slips statistics. Typically, phase-slip properties have been
studied by linear-response measurements, which are only
feasible when the nanowires have a measurable resistance,
i.e., at high temperatures. The single-slip-to-switch regime is
interesting because it occurs at low temperatures, and thus it
is a complementary tool with which to study the properties
of phase slips.

Finally, the monotonic increase in the switching-current
distribution width with decreasing temperature, even in the
single-slip-to-switch regime, seems to indicate a severe ex-
cess of phase slips over the predictions of the Langer-
Ambegaokar McCumber-Halperin model of thermally acti-
vated phase slips. It seems at the very least plausible that the
quantum tunneling of the superconducting order parameter
(i.e., QPS) is the mechanism that serves to meet this excess.’
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APPENDIX A: INPUT FUNCTIONS AND PARAMETERS

In this appendix we catalog the models for the phase-slip
rate, heat capacity, and thermal conductivity that go into the
stochastic heat equation (5).

1. Phase-slip rate

We begin by considering the phase-slip rate. For the
TAPS rate, I'rppg, we have used the LAMH model, including
the nonlinear current response,

Praps(LT) =T'_paps(ILT) = Ty raps(1,T), (A1)
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AF.(I,T)

kT } » (A2)

U raps(I,T) = Q- (1, T)exp{—

where + or — indicate whether the phase slip results in cur-
rent rise or drop, respectively. The phase-slip barriers AF . at
bias current / and temperature 7 are given by

8 - —— V1 -3k?
AF (T)= cl(T)(EVE\u - 3k* - 8k(1 - k2)arctan7>,
N

(A3)
Aﬂ@)cﬂ%wn - 3Kk

11 -3k
+8k(1 - K2) [ - arctan\—] ) . (A4)
N2k

UE MiI (D),

8 2e (A3)

where the phase gradient k at current / is the real solution of
the equation

A
D k(1 - &) (A6)

and the temperature-dependent critical current 7.(7) (Ref. 20)
is expressed in terms of the wire length L, the critical tem-
perature 7., the zero-temperature coherence length &,, and
the normal-state resistance of the wire R,,,21 via

LT |: ( T)2:|3/2
néO Tc .

We approximate the prefactor )..(7,7) in Eq. (A2) via

(A7)

3L [aFu=0m)|"

Q(T)‘zﬂﬁ/zf(wn{ kpT } S

Q_(I,T) = (1 = \36) 541 + kK4)Q(T), (A9)
Q. (1,T)=Q(T). (A10)

In the presence of a bias current /, the “+” phase slips are
exponentially more rare than the “~”" phase slips. Therefore,
we keep the current-dependent corrections to the prefactor
for the — phase slips but not for the + phase slips. Thus, we
obtain an approximation that works in both the linear-
response regime, where the current correction is irrelevant,
and in the high-bias regime, where + phase slips are rare. We
estimate the temperature-dependent coherence length and the
Ginzburg-Landau relaxation time via

1= (TIT.)*

f(T) = 50 1 - (T/T )2 >

(A11)
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Th

7'(T)=m. (A12)

Thus, we can express the phase-slip rate via the physical
parameters L, R,, &, and T,.. To obtain the quantum phase-
slip rate, we replace AF/kgT in Egs. (A2) and (AS8) by
AF/kgTosy, where To=(T,.+T,T) is the effective tempera-
ture. T, and T are treated as fitting parameters, 7* being the
low-temperature limiting value of 7.

2. Heat capacity and thermal conductivity

Unfortunately, we know of no direct experimental data on
the heat capacity and thermal conductivity of current-
carrying superconducting nanowires. The diameter of the
wires used in experiments is comparable to &,. Thus, the
thermodynamic properties of these wires should lie some-
where between those of a bulk superconductor and a normal
metal. Therefore, for the purposes of computing the thermo-
dynamic functions, we model the wire as being composed of
a BCS superconducting wire of cross-sectional area A; in
parallel to a normal-metal wire of cross-sectional area A,.
The BCS and Fermi-liquid expressions for heat capacity”
are

2N, df; dE
Cyppes(®)=— =2 Ekd(,BfEk)<E +B— g)dfk,
(A13)
Cor(®)= %#Noklﬁ@ (A14)

where B=1/kz0, Ek:\,'§§+A2(®), f is the Fermi function,
and A(®) is obtained from the BCS gap equation. Thus, the
total heat capacity of the wire C, is given by

C = A Cypes +A2C, mr
v A +A, '

(A15)

Similarly, the dirty-limit BCS (Refs. 23 and 24) and Fermi-
liquid expressions for thermal conductivity are

” sech’[€/2kz0] €
K ®)=2N,D ————de, (Al6
s,BCS( ) 0 fA 2kz0 kz© €, ( )
Ly®OL
K 5 (0)= Al7
A,FL( ) ARn } ( )

where D is the diffusion constant [for MoGe D~1 cm?/s
(Ref. 25)] and Ly= ﬂlké/ 3e?. The total thermal conductivity
K, is, correspondingly, given by

K= AKpes +AsK Fr

Al8
* Al +A, (A18)
The fitting parameters describing the heat capacity and ther-
mal conductivity are the cross-sectional areas A; and A,, and
T, of the nanowire.
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APPENDIX B: FITTING PROCEDURE

The main goal of the fitting procedure is to fit the
switching-rate data. However, in addition to the mean
switching rates at high bias currents and low temperatures,
we also have data on the linear-response resistivity in the
high-temperature regime. (The linear-response resistivity be-
comes too small to measure below T~ 1.9 K for our wires.)
The fitting is performed in two steps. In the first step, we fit
the high-temperature linear-response data. In the second step,
we use the parameter values from the first step as a starting
point in fitting the switching-rate data. Table I lists the pa-
rameters that go into our model; the procedure for determin-
ing them is explained below.

We fit the high-temperature linear response by conductiv-
ity following the usual procedure.?! In this procedure, L and
R, are obtained from microscopy and electrical measure-
ments of the wire resistance above T,. We fit the R(7T) data
using

Vv 1
R = llm_ = hm_(I)()FTAPs(I, T)
-0 -0l

to obtain 7, and &,.

Next, we use the values of L, R,, &, and T, obtained in
the first step, as a starting point in fitting of the mean
switching-rate data. In this step, we tune A, Ay, T, &, T,
and T, simultaneously to obtain the best possible fit over the
entire current and temperature range. During this procedure,
we set Ly=L and L,=L/4. We find that variation in L; and L,
does not significantly effect the fit, and thus we exclude them
from the already extensive list of fitting parameters. Finally,
we verify that the fitting parameters obtained from fitting the
mean switching-time data are consistent with the high-
temperature linear-response data.

APPENDIX C: FAST MEAN FIRST PASSAGE TIME
CALCULATION

In this section, we develop an approximation for comput-
ing the mean switching time very quickly. This approxima-
tion models the formation of a phase-slip train and is useful
for fitting experimental data, where it is important to com-
pute the mean switching time for a lot of points (7,1)
quickly.

In constructing this approximation we make several as-
sumptions. First, we assume that the phase-slip trains are
dilute in time, i.e., the wire spends most of its time at the
temperature 7}, but very rarely there are trains of phase slips
that heat up the wire. These trains are not overlapping, i.e.,
each train either leads to thermal runaway (a successful train)
or the wire cools back down to 7}, (an unsuccessful train).
The train is considered successful if the wire temperature
exceeds T7, as defined in Sec. IV.

In order to compute the switching rate, we must compute
the probability for the formation of a successful phase-slip
train S(7},I) and multiply it by the phase-slip rate I'(T},1),
which corresponds to the rate of formation of the first phase
slip in a train. Thus the switching rate is given by
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FIG. 12. (Color online) To compare approximate (thick solid
lines) and exact (colored dots) methods for solving for the mean
switching-time delay-differential equation, we plot the mean
switching rate 77!(T},1) as a function of bias current I for various
bath temperatures 7,={1.9,1.7,1.5,1.3,1.1,0.9,0.7,0.5,0.3} (from
left to right) (Ref. 17). The thin lines correspond to the phase-slip
rate and are shown for comparison. The parameter k in Eq. (C4)
was set to 0.5.

7Ty, 1) = S(Ty,, DT (T}, ). (C1)

At this point, we make the additional assumption that the
probability to form a successful train can be computed phe-
nomenologically, as follows. Consider a phase slip in a wire
that is at temperature 7. Immediately after a phase slip, the
wire has temperature T+ 7(T,I) but it is also cooling at the
rate r,=(T-T,)a(T,T,). If the phase-slip train is to continue,
there must be another phase slip within a time ~r;1; other-
wise the wire would cool to the bath temperature 7}, and the
phase-slip train would be unsuccessful. Applying this proce-
dure to a chain of phase slips, we find that S(7},,1), the prob-
ability to construct a successful phase-slip train, is given by

N

S(T.) 11} (T, - Ty AT, Ty)

(C2)

The mean switching rate, computed using the phenom-
enological model for the probability to form a successful
phase-slip train given by Eq. (C2), turns out to be too crude
to give results that are quantitatively accurate, although,
qualitatively, the exact results obtained by solving Eq. (32)
are well reproduced. In order to improve accuracy, we take
into account the fact that the phase-slip rate drops as the wire
cools, and also introduce the tunable parameter k, which
characterizes how much the wire is allowed to cool before a
phase-slip train is considered to be unsuccessful. Consider a
wire at temperature 7;. In the absence of phase slips, we
approximate the equation for the evolution of the wire tem-
perature by

3T(t) == (T-Tyd,, (C3)

where T(0)=T; and d;,=C (T}, T}). To parametrize the failure
of a phase-slip train, we assume that a phase-slip train is
unsuccessful if the temperature of the wire reaches the value

Tipan=(1=k)T;+kT,_;, (C4)

where k is a tunable parameter of order unity that should be
chosen to minimize the difference between the exact [i.e.,
obtained from solutions of Eq. (32)] and the phenomenologi-
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cal switching rates. Having defined T;,;, we can define the
time to reach it via

Titait— Ty ) (©5)

1
1 i1 = 10
il = g( T,—T,

Finally, taking into account the change in the phase-slip rate
as the wire cools, as well as ; ,;, we modify Eq. (C2) to read
as
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N 1 fail
S(Ty,D ~ 11 dil[Ty, + (T;— Ty)e . 1].  (C6)
=1 Y0

In Fig. 12 we compare the approximate switching rates
obtained from Eq. (C1) by using the phenomenological ap-
proximation Eq. (C6) to the exact switching rate obtained
from Eq. (32). We see that the phenomenological approxima-
tion is quantitatively very close to the exact switching rate.
Therefore, to performing fits on experimental data we, in
fact, use this phenomenological approximation for the
switching rate, as it can be computed much faster.

UIn settings in which it is instead the current carried by the system
that is externally controlled, W(z) does undergo a transition but
the boundary values of W(z) evolve in concert with the bulk
values to produce a final state that is identical to the initial one.
The imposed current is carried through the nanowires almost
exclusively as supercurrent, except in the (temporal and spatial)
neighborhood of the phase-slip event, when and where it is pri-
marily carried as normal current.
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